- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Connell, Justin_G (1)
-
Diroll, Benjamin_T (1)
-
Fry, H_Christopher (1)
-
Gong, Jue (1)
-
Hla, Saw_Wai (1)
-
Kim, Taewoo (1)
-
Latt, Kyaw_Zin (1)
-
Li, Mengyuan (1)
-
Liu, Yuzi (1)
-
Pearson, John_E (1)
-
Schaller, Richard_D (1)
-
Soldan, Calvin (1)
-
Wostoupal, Owen_S (1)
-
Xiao, Xudong (1)
-
Xu, Tao (1)
-
Yang, Zhenzhen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tuning the properties of a pair of entangled electron and hole in a light-induced exciton is a fundamentally intriguing inquiry for quantum science. Here, using semiconducting hybrid perovskite as an exploratory platform, we discover that Nd2+-doped CH3NH3PbI3(MAPbI3) perovskite exhibits a Kondo-like exciton-spin interaction under cryogenic and photoexcitation conditions. The feedback to such interaction between excitons in perovskite and the localized spins in Nd2+is observed as notably prolonged carrier lifetimes measured by time-resolved photoluminescence, ~10 times to that of pristine MAPbI3without Nd2+dopant. From a mechanistic standpoint, such extended charge separation states are the consequence of the trap state enabled by the antiferromagnetic exchange interaction between the light-induced exciton and the localized 4 fspins of the Nd2+in the proximity. Importantly, this Kondo-like exciton-spin interaction can be modulated by either increasing Nd2+doping concentration that enhances the coupling between the exciton and Nd2+4 fspins as evidenced by elongated carrier lifetime, or by using an external magnetic field that can nullify the spin-dependent exchange interaction therein due to the unified orientations of Nd2+spin angular momentum, thereby leading to exciton recombination at the dynamics comparable to pristine MAPbI3.more » « less
An official website of the United States government
